

PROJECT CURSOR GLOVE

REPORT
By Asif Mohamed, Vishnu Ullas & Paul Sujeet

CONTENTS

1. Abstract .. 3

2. Motivation ... 4

3. Inertial Sensors .. 6

The Coordinate Frames .. 7

Parameterizing Orientations .. 8

Rotational Matrices ... 8

Euler Angles .. 9

Unit Quaternions .. 10

Measurement Models .. 10

Gyroscope Model ... 10

Accelerometer Model .. 10

Magnetometer Model .. 11

4. Filters for Orientation Estimation... 13

State-Space Model Representation ... 13

Kalman Filter .. 13

Complementary Filter ... 14

Madgwick Filter ... 15

Extended Kalman Filter .. 16

Observation & Experimentation .. 17

5. Implementation ... 20

Hardware Requirements .. 21

Glove Unit ... 21

the Base-Station Unit ... 24

Software Implementation .. 26

GLOVE Unit ... 26

The Base-Station Unit ... 27

6. Conclusions and Future Works ... 28

7. Biblography .. 30

1. ABSTRACT

Our main goal is to build a wearable-device with feasible and compact hardware

modules that can be used to control a mouse pointer on any PC. To achieve this

goal, we need to implement few other goals. To control the movement of the

mouse pointer using a glove, we need to visualize a 3D orientation from a single 6

or 9 DOF IMU (Inertial Measurement Unit). To produce the most accurate and

reliable orientation estimations, we need to research and design the best filter for

our application and overall, we need to create a better user-environment

interaction.

2. MOTIVATION

During our master’s degree, we had implemented two projects that involve

automation. The first project was called “Sweet Shot” and it comprised of a small

automated cannon that would sense if a person has entered a room and calculate

his/her height via an Ultrasonic sensor placed on the frame of the door. Then the

cannon would automatically calibrate itself to aim for the individual’s waist and

shoot candy at them. The cannon was made from recyclable material and only

had one DOF (just moves up and down) as we implemented only using an

accelerometer.

The next project we made was called “May the candy be with you”. It was an

extension of the previous project and our first look into using a wireless glove like

device for automation purposes. In this project we gave the cannon 2 DOF (both

up & down and left & right) and the movement of the cannon and the firing was

controlled by the glove the user wears.

Figure 1. Block Schematics of 'May the Candy be with you'.

After the implementation of this project, we decided to focus more on the

application of the glove and how we can make it more automated and use it for

other applications. Hence, the Cursor Glove. While researching further into this idea,

we came across various projects and related papers that provided us with further

understanding to implement this project.

Two students from Cornell University (1) implemented a wireless computer pointing

device with glove-based controls and user preference select ability. The idea is to

control a cursor through different hand orientations and finger presses using just an

accelerometer. Users can operate their computers with their hands in midair without

the hassle of desks surfaces or wires. The results were promising but there was a lot

of noise that was not taken into consideration. Clearly, just using one inertial sensor

to track hand motion wasn’t enough. Thus, we started researching on orientation

estimation based on IMUs.

A paper (2) from 2017 was referred to us by our supervisor, Frederik, and it focused

on the signal processing aspects of position and orientation estimation using inertial

sensors. It also discusses about different modeling choices and algorithms that

include optimized-based smoothing and filtering as well as less computational

extended Kalman filter and complementary filter implementations. Studying this

journal paper gave us quite a vast number of choices of estimation algorithms to

jump into.

In 2009 Sebastian Madgwick developed an IMU and AHRS sensor fusion algorithm

(3) as part of his Ph.D. research at the University of Bristol. This paper (4) gave a deep

overview on the Madgwick filter, which is more of an optimization technique to fuse

sensor data and gave us a better understanding on its implementation.

In the next chapter, we explain the different features of inertial sensors and

algorithms that use these features for estimation orientation.

3. INERTIAL SENSORS

The term inertial sensor is used to denote the combination of a three-axis

accelerometer and a three axis gyroscope. Devices containing these sensors are

usually referred to as inertial measurement units (IMUs). A gyroscope measures the

sensor’s angular velocity, i.e. the rate of change of the sensor’s orientation. An

accelerometer measures the external specific force acting on the sensor. The

specific force consists of both the sensor’s acceleration and the earth’s gravity.

Nowadays, many gyroscopes and accelerometers are based on

microelectromechanical system (MEMS) technology. MEMS components are small,

light, inexpensive, have low power consumption, short start-up times and their

accuracy has significantly increased over the years.

Inertial sensors can be used to provide information about the pose of any object

that they are rigidly attached to. It is also possible to combine multiple inertial

sensors (e.g. magnetometer) to obtain information about the pose of separate

connected objects. Hence, inertial sensors can be used to track human motion as

well.

There exists a large amount of literature (5) (4) (6) on the use of inertial sensors for

position and orientation estimation. The reason for this is not only the large number

of application areas. Important reasons are also that the estimation problems are

nonlinear and that different parametrizations of the orientation need to be

considered (2), each with its own specific properties.

Figure 2.Schematic illustration of dead-reckoning, where the accelerometer

measurements (external specific force) and the gyroscope measurements (angular

velocity) are integrated to position and orientation

Inertial sensors are frequently used for navigation purposes where the position and

the orientation of a device are of interest. Integration of the gyroscope

measurements provides information about the orientation of the sensor. After

subtraction of the earth’s gravity, double integration of the accelerometer

measurements provides information about the sensor’s position. To be able to

subtract the earth’s gravity, the orientation of the sensor needs to be known. Hence,

estimation of the sensor’s position and orientation are inherently linked when it

comes to inertial sensors. The process of integrating the measurements from inertial

sensors to obtain position and orientation information, often called dead-

reckoning.

In practice, however, the inertial measurements are noisy thus the integration steps

from angular velocity and from acceleration to position introduce integration drift.

Errors in the measurements have a large impact on the quality of the estimated

position and orientation using inertial sensors only. This is particularly the case for

position, which relies both on double integration of the acceleration and on

accurate orientation estimates to subtract the earth’s gravity. Because of this,

inertial sensors need to be supplemented with other sensors and other models to

obtain accurate position and orientation estimates. For orientation estimation, they

are often used in combination with magnetometers, which measure the direction

of the magnetic field.

In this chapter we focus on the signal processing orientation estimation using inertial

sensors, discussing different modeling choices and several important algorithms.

THE COORDINATE FRAMES

In order to discuss the quantities measured by IMUs in more detail, a few coordinate

frames (2) need to be introduced:

The body frame b is the coordinate frame of the moving IMU. Its origin is in the center

of the accelerometer triad and it is aligned to the casing. All the inertial

measurements are resolved in this frame.

The navigation frame n is a local geographic frame in which we want to navigate.

In other words, we are interested in the position and orientation of the b-frame with

respect to this frame. For most applications it is defined stationary with respect to

the earth. However, in cases when the sensor is expected to move over large

distances, it is customary to move and rotate the n-frame along the surface of the

earth.

The inertial frame i is a stationary frame. The IMU measures linear acceleration and

angular velocity with respect to this frame. Its origin is located at the center of the

earth and its axes are aligned with respect to the stars.

The earth frame e coincides with the i-frame but rotates with the earth. That is, it has

its origin at the center of the earth and axes which are fixed with respect to the

earth.

Figure 3. An illustration of three of the coordinate frames: the n-frame at a certain location

on the earth, the e-frame rotating with the earth and the i-frame.

PARAMETERIZING ORIENTATIONS

In this section we introduce four different ways of parametrizing orientations (2).

Note that these describe the same quantity and can hence be used

interchangeably. There are differences in for instance the number of parameters

used in the representation, the singularities and the uniqueness.

Rotational Matrices

A basic rotation (also called elemental rotation) is a rotation about one of the axes

of a coordinate system. The following three basic rotation matrices rotate vectors

by an angle θ about the x-, y-, or z-axis, in three dimensions, using the right-hand

rule — which codifies their alternating signs. (The same matrices can also represent

a clockwise rotation of the axes).

Other rotation matrices can be obtained from these three using matrix

multiplication. For example, the product,

represents a rotation whose yaw, pitch, and roll angles (Euler angles) are α, β and

γ, respectively.

Euler Angles

Rotation can also be defined as a consecutive rotation around three axes in terms

of so-called Euler angles. We use the convention (z, y, x) which first rotates an angle

ψ around the z-axis, subsequently an angle θ around the y-axis and finally an angle

φ around the x-axis.

The ψ, θ, φ angles are also often referred to as yaw (or heading), pitch and roll,

respectively. Furthermore, roll and pitch together are often referred to as inclination.

Like the rotation vector, Euler angles parametrize orientation as a three-dimensional

vector.

Euler angle representations are not unique descriptions of a rotation for two reasons.

First, due to wrapping of the Euler angles, the rotation (0, 0, 0) is for instance equal

to (0, 0, 2πk) for any integer. Furthermore, setting θ = π/2, the only rotations that can

be observed is φ and ψ. Because of this, for example the rotations (π/2 , π/2 , 0),

(0, π/2 , − π/2), (π, π/2 , π/2) are all three equivalents. This is called gimbal lock.

Unit Quaternions

A commonly used parametrization of orientation is that of unit quaternions.

Quaternions (7) are an appealing tool for describing rotations in 3D as they do not

suffer from gimbal lock, that impairs methods based on Euler angle. They were first

introduced by Hamilton and are widely used in orientation estimation algorithms. A

unit quaternion uses a 4-dimensional representation of the orientation according to

A unit quaternion is not a unique description of an orientation. The reason for this is

that if q represents a certain orientation, then −q describes the same orientation.

MEASUREMENT MODELS

Gyroscope Model

The gyroscope measures the angular velocity ω at each time instance t. However,

its measurements are corrupted by a slowly time varying bias and noise. Hence the

measurement model (6) is given by,

Where ω is the angular velocity from inertial frame to body frame, δ is the

gyroscope bias and e is the process noise.

The gyroscope measurement noise is quite Gaussian. If the sensor is properly

calibrated, the measurement of the gyroscope axes is independent. It can be

assumed that,

Accelerometer Model

The accelerometer (6) measures the specific force 𝑓𝑡
b at each time instance. The

accelerometer measurements are typically assumed to be corrupted by a bias δ.

and noise e as

The accelerometer bias is slowly time-varying. Like the gyroscope bias, the

accelerometer bias can either be modeled as a constant parameter, or as part of

the time-varying state. Since the accelerometer measures both the local gravity

vector and the linear acceleration of the sensor, it provides information both about

the change in position and about the inclination of the sensor. Neglecting the

Coriolis acceleration, the measurement model can be simplified into

Where, 𝑎nn
n is the linear acceleration and 𝑔n is the gravity vector.

Naturally, the model is almost never completely true. However, it can often be used

as a sufficiently good approximation of reality.

Magnetometer Model

Magnetometers measure the local magnetic field, consisting of both the earth

magnetic field and the magnetic field due to the presence of magnetic material.

The (local) earth magnetic field is denoted 𝑚n and it is illustrated in Figure.

Figure 4. (a) Schematic of the earth magnetic field lines (green) around the earth (blue).

(b) Schematic of a part of the earth where the local earth magnetic field mn makes an

angle δ with the horizontal plane. This angle is called the dip angle.

Its horizontal component points towards the earth’s magnetic north pole. The ratio

between the horizontal and vertical component depends on the location on the

earth and can be expressed in terms of the so-called dip angle δ. The dip angle

and the magnitude of the earth magnetic field are accurately known from

geophysical studies.

If the sensor does not travel over significant distances as compared to the size of

the earth, the local earth magnetic field can be modelled as being constant. In

case no magnetic material is present in the vicinity of the sensor, orientation

information can be deduced from the magnetometer. More specifically,

magnetometers are typically used to complement accelerometers to provide

information about the sensor heading, i.e. about the orientation around the gravity

vector which cannot be determined from the accelerometer measurements.

Magnetometers provide information about the heading in all locations on the earth

except on the magnetic poles, where the local magnetic field mn is vertical.

Orientation can be estimated based on the direction of the magnetic field. The

magnitude of the field is irrelevant. Because of this, without loss of generality we

model (6) the earth magnetic field as

If the magnetometer only measures the local magnetic field, its measurements ym,t

can be modeled as

The noise em,t represents the magnetometer measurement noise as well as the

model uncertainty.

4. FILTERS FOR ORIENTATION ESTIMATION

In this chapter, we will be discussing the various algorithms pertaining orientation

estimation and optimization of IMU data.

STATE-SPACE MODEL REPRESENTATION

Before we can jump to the filters, we need to get familiar with how we can represent

the entire state-space model. It describes the behavior of a system. The most

general form of a linear discrete time invariant system is described by the two

following equations,

Where x(k) is the state vector (e.g. Orientation parameters), at discrete time k

 u(k) is the system input at discrete time k

 y(k) is the system output (e.g. measurements) at discrete time k

 F - State matrix

 G – Input matrix

 H – Output matrix

 D – Feedthrough matrix

 v(k) is the process noise

 w(k) is the measurement noise

KALMAN FILTER

As the name mentions, Kalman filter (2) is not your traditional frequency filter but a

recursive state estimator. Based on the system state and state covariance, it can

describe how reliable a state estimate is and how much state variables change all

together.

Figure 5. Block diagram of Kalman Filter

Where Q is the process noise covariance matrix and R is the measurement noise

covariance matrix

Prediction – The next estimated states, measurements and state covariance are

predicted.

Update – The residual state covariance and measurements are updated along with

the states using filter gain.

The Kalman Filter is permanently weighing the residual based on the relation of

process and measurement noise. The weighted residual is then used to update the

system state. Measurement and process noise can vary with time. Different

information sources can be weighted dynamically depending on a given situation.

COMPLEMENTARY FILTER

The complementary filter (4) gives us a "best of both worlds" kind of deal but uses

only 6DOF IMU data. On the short term, we use the data from the gyroscope,

because it is very precise and not susceptible to external forces. On the long term,

we use the data from the accelerometer, as it does not drift. In its most simple form,

the filter looks as follows:

The gyroscope data is integrated every timestep with the current angle value. After

this it is combined with the low-pass data from the accelerometer (already

processed with atan2). The constants (0.98 and 0.02) must add up to 1 but can of

course be changed to tune the filter properly.

Every iteration the pitch and roll angle values are updated with the new gyroscope

values by means of integration over time. The filter then checks if the magnitude of

the force seen by the accelerometer has a reasonable value that could be the real

g-force vector. If the value is too small or too big, we know for sure that it is a

disturbance we don't need to consider. Afterwards, it will update the pitch and roll

angles with the accelerometer data by taking 98% of the current value and adding

2% of the angle calculated by the accelerometer. This will ensure that the

measurement won't drift, but that it will be very accurate on the short term.

MADGWICK FILTER

Madgwick (4) has presented an interesting approach, which is based on Improving

the orientation estimate by fusing accelerometer and gyroscope data as a

minimization problem and solving it with a gradient technique.

Madgwick uses a quaternion approach to represent the attitude, which

immediately poses the problem of how to convert the measured acceleration

vector into a quaternion. Madgwick has described the problem in clear detail: A

body’s attitude (quaternion) cannot be unambiguously represented by a direction

(vector) since any rotation of the body around that direction gives the same vector

but a different quaternion. The solution manifold is a “line“ and not a “point“. Or

plainly: The body’s yaw angle is totally undetermined.

To tackle this problem, he suggested to determine that rotation, which brings the

gravity vector in the earth frame in coincidence with the measured acceleration in

the body frame, that is to find the quaternion respectively. Converting the

measured vector to a quaternion is very desirable since then data fusing could be

done directly on quaternions. In order to determine this rotation computationally,

Madgwick suggested to formulate it as minimization problem and to solve it

iteratively by the method of steepest decent.

This approach has two problems. The exact solution is not unique but there are

infinitely many, and not the exact solution is calculated. One can hence expect

that the yaw angle in the computed orientation is not only arbitrary but determined

by the noise introduced by the incomplete steepest decent. The yaw angle

fluctuates.

EXTENDED KALMAN FILTER

The Kalman Filter (8) (2) assumes a system of linear functions. The linear

transformation of a normal distributed variable is normal distributed again. This is not

valid for non-linear systems. In real world, almost every system is non-linear. In order

to handle non-linear systems, the Kalman Filter is “extended” by approximating non-

linearities with a Taylor Series Expansion. (9)A 1st order expansion is often enough.

The 1st order Taylor Series Expansion is equivalent to the evaluation of the Jacobians

of the functions F and H at a certain point x.

To estimate and update the state:

Figure 6. Block Diagram of Predict Step in EKF

And to estimate and update the state covariance:

Figure 7. Block Diagram of Update Step of EKF

OBSERVATION & EXPERIMENTATION

In order to analyze the discussed filters, we were required to use an app called the

Sensor Fusion app (10) that was developed by Linkoping University and referred to

us by our supervisor. This app can record raw measurements from any sensor that is

available on the respective smartphone used. This can be recorded or streamed

live via WLAN to MathWorks MATLAB. Here, we have used a Samsung Galaxy S8

smartphone to read raw data from the accelerometer, gyroscope and

magnetometer and recorded the following observations of the Euler angles after

filtering them with the Madgwick filter and QEKF filter in MATLAB scripts.

Figure 8. Raw Euler Angles from IMUs without Filtering/Optimization

The above fig. shows the Raw Euler angles without undergoing any filtration or

optimization. As we can see, the amount of noise affecting the Euler angles are very

high and the data we retrieve from the sensors are not accurate at all. Now, we

implement the Madgwick filter onto these raw data and optimize in quaternion

representations rather than Euler angles.

Figure 9. Optimized Euler angles using Madgwick Filter

This fig. shows the Euler angles after filtering them through the Madgwick filter. As

we can see, most of the noise affecting the Euler angles have been filtered out and

the Euler angle values seem optimized. However, the accuracy of the Yaw values

is still way not optimal, and the Roll angles are still taking time to optimize. Still, this

accuracy is better than Kalman filter and complementary filter themselves in

practice.

Figure 10. Estimated Euler Angles with Quaternion Extended Kalman Filter.

After Madgwick filter, we wanted to test Extended Kalman Filter since it was more

promising than an optimizing filter. The above fig. shows the observations of the Euler

angles after filtering them through the Quaternion based EKF (QEKF). We observed

that using this filter we get the most accurate and optimized results. Even thou, the

Yaw values are slightly noisy compared to Madgwick filtering, they are more

accurate in real time. The Roll and Pitch angles on the other hand are more than

perfect. Using these two filters, we want to build the application we had discussed

to see how well they perform in a non-linear system like a glove-like device.

5. IMPLEMENTATION

Figure 11. General orientation of how the glove is going to be performed.

Thus, using the observations that we have seen before, we want to implement these

techniques onto an application. The glove used in our project is just a normal glove.

The PCB containing the Arduino Nano, the MPU-9250 and the HC-05 transceiver is

placed on the top of the glove. The contact pads were made for 3 fingers (ring

finger, middle finger, index finger) which are connected to their individual 550 Ohm

resistors. The contact pad on the thumb is connected directly to the pull-up digital

pin on the Nano.

As you can see from the above figure, the red line describes the Roll, the blue line

describes the Pitch and the yellow line describes the Yaw of the IMU. The index

finger contact is programmed for left-click and the middle finger contact for right-

click. The ring finger contact is programmed as an interrupt to pause the

transmission of data from the Glove to the Base-Station. The thumb contact is used

to provide voltage. Thus, whenever the thumb contacts one of the 3 fingers, it

enables them to do their preprogrammed function. In theory, the thumb and fingers

behave like a switch.

The Roll, Pitch and Yaw values, that is estimated/filtered from the raw data, are used

to move the mouse pointer. The Roll moves the mouse pointer through the X-axis

while the Pitch moves the mouse pointer through the Y-axis. The Yaw is used for the

scroll function.

HARDWARE REQUIREMENTS

The hardware overall contains two units, the Glove and the Base-Station.

Glove Unit

Figure 12. Picture of our Glove product

Figure 13. Circuit Schematics of the Glove Unit

The Glove comprises of the following:

Arduino Nano

The Arduino Nano (11) is a small, complete, and breadboard-friendly board based

on the ATmega328P. The Arduino Nano is programmed using the Arduino Software

(IDE) and runs both online and offline. Its tiny size makes it perfect for compact

applications even though the functionally is the same as their larger counterparts.

Figure 14. Arduino Nano

MPU-9250 IMU chip

The MPU-9250 (12) is the latest 9-axis MEMS sensor from InvenSense®. The MPU-9250

has lowered power consumption and decreased size by 44% compared to the

MPU-9150. It has claimed to have Gyro noise performance 3x better and a compass

full scale range over 4x better than competitive offerings. The MPU-9250 uses 16-bit

analog-to-digital converters (ADCs) for digitizing all 9 axes.

It establishes serial communication between the Arduino Nano via the I2C

communication protocol.

Figure 15. Connection between Arduino Nano & MPU9250

Bluetooth Transceiver HC-05 (Master)

HC-05 Bluetooth Module (13) is an easy to use Bluetooth SPP (Serial Port Protocol)

module, designed for transparent wireless serial connection setup. Its

communication is via serial communication which makes an easy way to interface

with controller or PC. HC-05 Bluetooth module provides switching mode between

master and slave mode which means it able to use neither receiving nor

transmitting data.

For our project, we have programmed this HC-05 module in Master mode as all it

needs to do is transmit data from the Glove to the Base-Station. The HC-05

establishes serial communication with the Arduino Nano via UART communication

protocol.

Figure 16. Connection between Arduino Nano & HC-05

Contact Pads

The contact pads are made using normal household aluminum foil paper and

insulated tape. The 3 finger contact pads are connected to a 550 ohm resistor

each. The thumb contact pad is connected to the pulled up digital pin of the

Arduino.

Figure 17. General Schematic of Contact Pads.

the Base-Station Unit

Figure 18. Base-Station Unit

Figure 19. Circuit Schematic of Base-Station

The Base-Station only comprises of the following:

Arduino Pro Micro (3.3V/8MHz)

The Pro Micro (14) contains an ATmega32U4 on board. The USB transceiver inside

the 32U4 allows us to add USB connectivity on-board and do away with bulky

external USB interface.

This tiny little board does all the Arduino tricks that we’re familiar with: 9 channels of

10-bit ADC, 5 PWM pins, 12 DIOs as well as hardware serial connections Rx and Tx.

There is a voltage regulator on board so it can accept voltage up to 12VDC.

Figure 20. Arduino Pro-Micro

Bluetooth Transceiver HC-05 (SLAVE)

The same BT transceiver is used as in the glove unit. This HC-05 (13) we configured it

in the Slave mode as all it needs to do is receive the data sent from the HC-05 at

the Base-Station in the same format it has been sent to.

SOFTWARE IMPLEMENTATION

Each hardware component in the Glove and the Base-Station have their own

software requirements which are explained below.

GLOVE Unit

MPU-9250

The Arduino library we used to program the MPU-9250 was taken from GitHub based

on the work of Kris Winer (15).

The MPU consists of 16-bit Analog-to-Digital converters (ADCs) for digitizing all the 9

axes. The MPU establishes serial communication with the Arduino Nano via I2C

communication protocol (16). The Inter-integrated Circuit (I2C) Protocol is a

protocol intended to allow multiple “slave” digital integrated circuits (“chips”) to

communicate with one or more “master” chips. Like the Serial Peripheral Interface

(SPI), it is only intended for short distance communications within a single device.

Like Asynchronous Serial Interfaces (such as RS-232 or UARTs), it only requires two

signal wires to exchange information. The digital motion processor (DMP) in the IMU

stores the axes. It just requires simple calibration. The data is being sampled at 100hz.

Bluetooth transceiver HC-05 (Master)

The Bluetooth transceiver first begins UART (17) Serial communication with the

Arduino Nano. A universal asynchronous receiver-transmitter (UART) is a computer

hardware device for asynchronous serial communication in which the data format

and transmission speeds are configurable. The electric signaling levels and methods

are handled by a driver circuit external to the UART. A UART is usually an individual

(or part of an) integrated circuit (IC) used for serial communications over a

computer or peripheral device serial port.

This transceiver is configured to be in Master mode using the AT command mode

(18).

If the Euler data and the respective contact states are valid, it sends data of type

string with a certain format to the Slave Bluetooth transceiver in the Base-Station.

The format of the data being sent is represented this way:

<Roll, Pitch, Yaw, L-click, R-click>.

Arduino Nano

Using the Arduino IDE, we can program our MCU quite easily in Arduino

environment. The Nano first checks if both the Bluetooth modules have successfully

paired with each other. If they have established a successful communication, then

the Arduino starts reading the DMP data to retrieve the respective axes. The Euler

angles obtained from this data are updated instantaneously with the use of

Madgwick filter. The Nano also reads the contact pads designed for left-click, right-

click and for e-click (to pause the data transmission).

The Base-Station Unit

Bluetooth transceiver HC-05 (Slave)

This Bluetooth transceiver, using the AT mode (18), is configured to be in Slave mode

and to automatically pair with the Master HC-05 in the Glove. The transceiver first

begins UART Serial communication with the Arduino Pro-Micro. Once it pairs with

the Master HC-05 at the Base-Station, it starts to receive the data that’s being sent.

Arduino Pro-Micro

As discussed previously about the Arduino IDE, the Pro-Micro extracts the data

received by the HC-05 and splits the information into individual components. This

Arduino has an existing library in its forum that uses functions to directly manipulate

the cursor on the display. The received Roll and Pitch values are extracted then

mapped for the movement of the cursor through the Arduino mouse library (19).

Two button states (left-state & right-state) are configured to implement the mouse

button clicks (left-click & right-click). When the e-click is high, the mouse functions

are suspended until clicked again since all data transmission is halted.

6. CONCLUSIONS AND FUTURE WORKS

The goal of this project was not to give a complete overview of all algorithms that

can be used for position and orientation estimation. Instead, our aim was to

implement these algorithms into an application that we can observe their reliability

and robustness.

After implementing the whole application, we faced a couple of problems that we

could have worked on if given more time period.

• Extended Kalman filter

As the Arduino Nano is still quite a small MCU with limited memory, there wasn’t

enough dynamic memory to hold the EKF library we had created for Arduino. It had

consumed almost 201% more SRAM than Arduino Nano comprised of. We wish to

work on this further by optimizing the code to decrease the computational size or

by using another MCU instead of the Nano e.g. The Arduino Mega 2560 which can

hold.

• Battery powered

The Glove works now by receiving power directly from the PC via the USB power

cable. This limits the movement of the user and we would like to focus on making it

battery operated so that it wouldn’t affect the freedom of movement of the user.

• Eliminate Base-Station

We would also like to eliminate the Base-Station and directly connect the Glove to

the PC via Bluetooth. This way all the user needs to do is wear the glove and power

it on and have full control of the mouse movement once the Bluetooth connection

has been established. This can be done by building an application that reads the

Bluetooth data.

• Hand gestures

Apart from just mouse manipulation, we would like to incorporate other features like

hand gestures into the Glove. This would make the user-environment interaction

way friendlier and easier to use. The user will be able to configure the gestures and

make the Glove their own.

• Integrate with other applications

The Glove can be used in a variety of applications and we would like to broaden

this environment and focus on using the Glove for other applications like gaming or

Virtual reality.

• Adding more inertial sensors

The Glove can be more robust and accurate by adding more inertial sensors into

our state system e.g. Global Navigation Sensor / Global Positioning System.

7. BIBLOGRAPHY

1. Adam Shih, Hyodong Lee. Cornell University. [Online] 2012.

http://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2012/as986_hl525/a

s986_hl525/index.htm.

2. Manon Kok, Jeroen D. Hol and Thomas B. Schon. Using Inertial Sensors for Position and

Orientation Estimation, Foundations and Trends in Signal Processing: Vol. 11: No. 1-2, pp

1-153. [Online] 2017. http://dx.doi.org/10.1561/2000000094.

3. X-IO Technologies. Open source IMU and AHRS algorithms. [Online] July 31, 2012.

http://x-io.co.uk/open-source-imu-and-ahrs-algorithms/.

4. Madgwick, Sebastian O.H. An efficient orientation filter for inertial and

inertial/magnetic sensor arrays. [Online] April 30, 2010. http://x-

io.co.uk/res/doc/madgwick_internal_report.pdf.

5. Kaiqiang Feng, Jie Li et al. A New Quaternion-Based Kalman Filter for Real-Time

Attitude Estimation Using the Two-Step Geometrically-Intuitive Correction Algorithm.

[Online] https://www.mdpi.com/1424-8220/17/9/2146.

6. Roberto G. Valenti, Ivan Dryanovski and Jizhong Xiao. Keeping a Good Attitude: A

Quaternion-Based Orientation Filter for IMUs and MARGs. [Online]

https://www.mdpi.com/1424-8220/15/8/19302.

7. Robotics, CH. Understanding Quaternions . [Online]

http://www.chrobotics.com/docs/AN-1006-UnderstandingQuaternions.pdf.

8. Strohmeier, Michael. Quaternion based Extended Kalman Filter. [Online]

https://wuecampus2.uni-

wuerzburg.de/moodle/pluginfile.php/1109745/mod_resource/content/1/QEKF_Floatsat

_WS16.pdf.

9. Morrell, Darryl. Extended Kalmna Filter Lecture Notes. [Online] 1997.

https://www.cs.cmu.edu/~motionplanning/papers/sbp_papers/kalman/ekf_lecture_no

tes.pdf.

10. Gustafsson, Fredrik. Sensor Fusion app. [Online]

http://users.isy.liu.se/en/rt/fredrik/app/.

11. Arduino. Getting Started with the Arduino Nano. [Online]

https://www.arduino.cc/en/Guide/ArduinoNano.

12. sparkfun. MPU-9250 Hookup Guide. [Online]

https://learn.sparkfun.com/tutorials/mpu-9250-hookup-

guide?_ga=2.225372122.1124681611.1513648154-1486562402.1510876149.

13. Electronic, GM. HC-05 Bluetooth Module User’s Manual V1.0. [Online]

https://www.gme.cz/data/attachments/dsh.772-148.1.pdf.

14. sparkfun. Pro Micro - 3.3V/8MHz. [Online]

https://www.sparkfun.com/products/12587.

15. Winer, Kris. Arduino sketches for MPU9250 9DoF with AHRS sensor fusion. GitHub.

[Online] https://github.com/kriswiner/MPU9250.

16. sparkfun. I2C. [Online] https://learn.sparkfun.com/tutorials/i2c.

17. Wikipedia. Universal asynchronous receiver-transmitter. [Online]

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter.

18. Dejan. How To Configure and Pair Two HC-05 Bluetooth Modules as Master and

Slave | AT Commands. How To Mechatronics. [Online]

https://howtomechatronics.com/tutorials/arduino/how-to-configure-pair-two-hc-05-

bluetooth-module-master-slave-commands/.

19. Arduino. Mouse. [Online]

https://www.arduino.cc/reference/en/language/functions/usb/mouse/.

